PASTA 2.0: an improved server for protein aggregation prediction
نویسندگان
چکیده
The formation of amyloid aggregates upon protein misfolding is related to several devastating degenerative diseases. The propensities of different protein sequences to aggregate into amyloids, how they are enhanced by pathogenic mutations, the presence of aggregation hot spots stabilizing pathological interactions, the establishing of cross-amyloid interactions between co-aggregating proteins, all rely at the molecular level on the stability of the amyloid cross-beta structure. Our redesigned server, PASTA 2.0, provides a versatile platform where all of these different features can be easily predicted on a genomic scale given input sequences. The server provides other pieces of information, such as intrinsic disorder and secondary structure predictions, that complement the aggregation data. The PASTA 2.0 energy function evaluates the stability of putative cross-beta pairings between different sequence stretches. It was re-derived on a larger dataset of globular protein domains. The resulting algorithm was benchmarked on comprehensive peptide and protein test sets, leading to improved, state-of-the-art results with more amyloid forming regions correctly detected at high specificity. The PASTA 2.0 server can be accessed at http://protein.bio.unipd.it/pasta2/.
منابع مشابه
The IntFOLD server: an integrated web resource for protein fold recognition, 3D model quality assessment, intrinsic disorder prediction, domain prediction and ligand binding site prediction
The IntFOLD server is a novel independent server that integrates several cutting edge methods for the prediction of structure and function from sequence. Our guiding principles behind the server development were as follows: (i) to provide a simple unified resource that makes our prediction software accessible to all and (ii) to produce integrated output for predictions that can be easily interp...
متن کاملBioinformatics prediction and experimental validation of VH antibody fragment interacting with Neisseria meningitidis factor H binding protein
Objective(s): We previously conducted an in silico research on the interactions between the ribosome display-selected single chain variable fragment (scFv) and factor H binding protein (fHbp) of Neisseria meningitidis. We found that heavy chain variable (VH) fragment of this scFv had considerable affinity to fHbp. These results led us to evaluate the ability of this sm...
متن کاملAGGRESCAN3D (A3D): server for prediction of aggregation properties of protein structures
Protein aggregation underlies an increasing number of disorders and constitutes a major bottleneck in the development of therapeutic proteins. Our present understanding on the molecular determinants of protein aggregation has crystalized in a series of predictive algorithms to identify aggregation-prone sites. A majority of these methods rely only on sequence. Therefore, they find difficulties ...
متن کاملIn Silico Prediction of B-Cell and T-Cell Epitopes of Protective Antigen of Bacillus anthracis in Development of Vaccines Against Anthrax
Protective antigen (PA), a subunit of anthrax toxin from Bacillus anthracis, is known as a dominant component in subunit vaccines in protection against anthrax. In order to avoid the side effects of live attenuated and killed organisms, the use of linear neutralizing epitopes of PA is recommended in order to design recombinant vaccines. The present study is aimed at determining the dominant epi...
متن کاملCell-PLoc 2.0: an improved package of web-servers for predicting subcellular localization of proteins in various organisms
Cell-PLoc 2.0 is a package of web-servers evolved from Cell-PLoc (Chou, K.C. & Shen, H.B., Nature Protocols, 2008, 2:153-162) by a top-down approach to improve the power for predicting subcellular localization of proteins in various organisms. It contains six predictors: Euk-mPLoc 2.0, Hum-mPLoc 2.0, Plant-mPLoc, Gpos-mPLoc, Gneg-mPLoc, and Virus-mPLoc, specialized for eukaryotic, human, plant,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 42 شماره
صفحات -
تاریخ انتشار 2014